
Research Institute for Advanced Computer Science
NASA Ames Research Center

Automatic Blocking of Nested Loops

Robert Schreiber Jack J. Dongarra

G3/61

N91-32644

Uncles

00475_7

!

'1t
"! i •

I0 2o 3o 4o

, ! i
t 1
' i

i
t

1

I
90 I00

lira_!

RIACS Technical Report 90.38 August, 1990

Submitted: Journal of Paralleland Distributed Computing

Automatic Blocking of Nested Loops

Robert Schreiber Jack J. Dongarra

i

0J_

0.$

0gd

O.55

i...... !

/I
I
f

!

i
l

!
!
l

i
i

I 'i
I
i

I0 20 30 40 S 70 _ N 160

The ResearchInstituteofAdvanced Computer Scienceisoperatedby UniversitiesSpace Research

Association,The American CityBuilding,Suite311,Columbia,MD 244,(301)730-2656

Work reported herein was supported by the NAS Systems Division of NASA and DARPA via Cooperative
Agreement NCC 2-387 between NASA and the University Space Research Association (USRA). Work was

performed at the Research Institute for Advanced Computer Science (RIACS), NASA Ames Research Center,

Moffett Field, CA 94035.

Automatic Blocking of Nested Loops

Robert Schreiber*

Research Institute for Advanced Computer Science

Mail Stop 230-5, NASA Ames Research Center

Mountain View, CA 94035

e-mail: schreiberQriacs, edu

Jack J. Dongarra t

Department of Computer Science

University of Tennessee

Knoxville, TN 37996-1301
and

Mathematical Sciences Section

Oak Ridge National Laboratory

Oak Pddge, TN 37831

e-mail: dongarra©cs.utk, edu

May 22, 1990

Abstract

Blocked algorithms have much better properties of data locality and therefore can

be much more efficient than ordinary algorithms when a memory hierarchy is in-

volved. On the other hand, they are very difficult to write and to tune for particular

machines. Here we consider the reorganization of nested loops through the use of

known program transformations in order to create blocked algorithms automati-

cally. The program transformations we use are strip mining, loop interchange, and

*Supported by the NAS Systems Division and/or DARPA via Cooperative Agreement
NCC 2-387 between NASA and the University Space Research Association (USKA).

tSupported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under Contract DE-ACOS-84OR21400.

a variantofloopskewinginwhich we allowinvertiblelineartransformations(with

integercoordinates)of the loop indices.In thispaper,we solvesome problems

concerningthe optimalapplicationofthesetransformations.We show, in a very

generalsetting,how tochoosea nearlyoptimalsetoftransformedindices.We then

show, inone particularbut ratherfrequentlyoccurringsituation,how to choosean

optimalsetofblocksizes.

Keywords: block algorithm, parallel computing, compiler optimization,

matrix computation, numerical methods for partial differential equations,

program transformation, memory hierarchy.

Submitted to: Journal of Parallel and Distributed Computing.

1 Introduction

An essential fact of life in very-large-scale integrated circuits is that tran-

sistors are cheap and wires are expensive. The concomitant fact in high-

performance computing, especially parallel computing, is that computation

is cheap and communication is expensive. The two types of communication

that we are primarily concerned with here are communication between the

processors in a multicomputer and communication between processors and

main memory.

Both these forms of communication are characterized by long latency

and low bandwidth compared to the CPU rate. For instance, in the CRAY-

I memory was able to provide only 80 Mwords per second to the vector unit,

which could produce one result and take in two operands per clock at 80

MHz; thus the memory was too slow by a factor of three. This same phe-

nomenon can be observed in the i860 RISC today, the NEC-SX supercom-

puters, the Alliant machines, the CM-2, and most other high-performance

machines. Communication speeds are likewise slower than processor speeds

in m-ulticomputerssuch as the InteliPSC/2. In that machine, processors

communicate over1-bit-widechannelsbut have fullword-wide paths tolocal

memory. While newer message passingmachines willemploy byte-widecom-

munication channels,the evolvingmicroprocessoralreadyprovidesmemory

portsof 8 or 16 bytes.

The principal architectural solution to these problems is to provide a

small but fastlocalmemory at each processor.The memory may be man-

aged by hardware on a demand basis(cache)or managed explicitlyby soft-

ware, eitheroperating system or application.If the processoris B times

fasterthan the data path to memory or to other processors,then itmust

make referenceto that slow data path only once for every B operations

in order not to be slowed down. For thisto happen, itmust get itsdata

from the localmemory roughly B - 1 times out ofevery B. Software must

organizethe computation so that this"hitratio"can be achieved.

1.1 Block algorithms: Matrix Multiplication as an Example

To achievethe necessaryreuse of data in localmemory, researchershave

developed many new methods forcomputation involvingmatricesand other

data arrays [5,7, 16]. Typicallyan algorithm that refersto individuald-

ements is replaced by one that operates on subarrays of data, which are

calledblocksin the matrix computing field.The operationson subarrays

can be expressedin the usual way. The advantage of thisapproach isthat

the smallMocks can be moved intothe fastlocalmemory and theirelements

can then be repeatedlyused.

The standard example is matrix multiplication. The usual program is

fori=ltondo

for j = 1 to n do

fork=ltondo

eli,j] = c[i,j] + a[i,k] • b[k,j] ;
od

od

od

The entire computation involves 2n 3 arithmetic operations (counting addi-

tions and multiplications separately), but produces and consumes only 3n 2

data values. As a whole, the computation exhibits admirable reuse of data.

In general, however, an entire matrix will not fit in a small local memory.
The work must therefore be broken into small chunks of computation, each

of which uses a small enough piece of the data. Note that for each iteration

3

of the outer loop (i.e., for a givenvalueof i) n2 operations are done and n 2

data is referred to w no reuse. For fixed values of i and j, n computation

and n data referred too m again, no reuse.

Now consider a blocked matrix-multiply algorithm.

for i0=lto nstep bdo

forj0=l tonstepbdo

fork0=lto nstepbdo

for i = i0 to min(i0 + b- 1, n) do

for j = j0 to rain(j0 + b - 1, n) do

for k = k0 to rain(k0 + b - 1, n) do

c[i,j] = c[i,j] + a[i,k]• b[k,j] ;
od

od

od

od

od

od

First, note that in this program exactly the same operations are done on

the same data; even round-off error is identical. Only the sequence in which

independent operations are performed is different from the unblocked pro-

gram. There is still reuse in the whole program of order n. But if we consider

one iteration with fixed i0, j0, and k0, we see that 2b 3 operations are per-

formed (by the three inner loops) and 3b2 data are referred to. Now we can

choose b small enough so that these 3b2 data will fit in the local memory and

thus achieve b-fold reuse. (If this isn't enough D if b < B in other words

-- then the machine is poorly designed and needs more local memory.) Put

the other way, if we require B-fold reuse, we choose the block size b = B.

The subject of this paper is the _¢_gmatic transformation of ordinary

programs to blocked form.

Our motivation for seeking such a capability is as follows. Many algo-

rithms can be blocked. Indeed, recent work by numerical analysts has shown

that the most important computations for dense matrices are blockable. A

major software development of blocked algorithms for linear algebra has

/

been conducted as a result [6]. Further examples, in particular in the solu-

tion of partial differential equations by difference and variational methods,

are abundant. Indeed, many such codes have also been rewritten as block

methods to better use the small main memory and large solid-state disk on

Cray supercomputers [14]. All experience with these techniques has shown

them to be enormously effective at squeezing the best possible performance

out of advanced architectures.

On the other hand, blocked code is much more difficult to write and to

understand than point code. Writing it is a difficult and error-prone job.

Blocking introduces block size parameters that have nothing to do with the

problem being solved and which must be adjusted for each computer and

each algorithm if good performance is to be achieved. Unfortunately, the

alternative to having blocked code is worse: poor performance on impor-

taut computations with the most powerful computers. For these reasons,

Kennedy has stated that compiler management of memory hierarchies is

the most important and most difficult task facing the writers of compilers

for high-performance machines [12].

1.2 Program Transformation and Blocking; Previous Work

We can view the reorganized matrix-multiply program in two ways. First, we

can consider the matrices A, B, and C as -_ x _ matrices whose elements are

b x b matrices. In this case, the inner three loops simply perform a multiply-

add of one such block-element. This is the view taken by most numerical

analysts. Second, we can derive the blocked program form the original,

unblocked program by a sequence of standard program transformations.

First, the individual loops are strip mined. For example, the loop

fori=ltondo

od

is replaced by

for i0 = 1 to n step b do

for i = i0 to min(i0 + b - 1, n) do

od od

(Strip mining is a standard tool for dealing with vector registers. One may

apply it "legally" to any loop. By legally, we mean that the transformed

program computes the same result as before.) Strip mining, by itself, yields

a six-loop program, but the order of the loops is not what is needed for a

blocked algorithm. The second transformation we use is loop interchange.

In general, this means changing the order of loops and hence the order in

which computation is done. To block a program, we endeavor to move the

strip loops (the i0, j0, and k0 loops above) to the outside and the point loops

(the i, j, and k loops above) to the inside. This interchange is what causes

repeated references to the elements of small blocks. In the matrix-multiply

example, the interchange is legal, but there are many interesting programs

for which it is not, including LU and QR decompositions and methods for

partial differential equations.

This approach to automatic blocking, through loop strip mining and

interchange, was first advocated by Wolfe [18]. It is derived from earlier

work of Abu-Sufah, Kuck, and Lawrie on optimization in a paged virtual-

memory system [1]. Wolfe introduced the term tiling. A tile is the collection

of work to be done, i.e., the set of values of the point loop indices, for a fixed

set of values of the block or outer loop indices. We like this terminology since

it allows us to distinguish what we are doing -- which is to decompose the

work to be done into small subtasks (the tiles) -- from the quite different

task of decomposing the data a priori into small subarrays (the blocks),

even though each tile does, in fact, act on blocks. Following Wolfe, we call

the problem of decomposing the work of a loop nest inder, space tiling.

Other authors have treated the issue of management of the memory

hierarchy [8]. Some other treatments of the problem of automatic blocking

have recently appeared [11], [4], [17], [18], [19]; none, however, gives the

quantitative statments of the problem and the solution that we provide

here.

6

1.3

l

Strip Mining and Loop Interchange Are Not Enough

Consider the one-dimensional,discretediffusionprocess

for t = 0 to m do

for i = 1 to n - 1 do

u[i,t]= f(u[i- 1,t- l],u[i,t- l],u[i + 1, t- ll);
od

od

At each time step (each iteration of the t loop) at every grid point, the value

of u(i) is updated by using the data at the three grid points i - 1, i, and

i + 1 from the previous time step, t - 1. This process is typical of PDE

computations. Let us apply strip mining and loop interchange to this code.

The resulting program, which follows, is incorrect.

for tO = 0 to m step bt do

for i0 = 1 to n - 1 step bi do

for t = t0 to rain(m, tO + bt - 1) do

for i - i0 to min(n - 1, iO + bi - 1) do

u[i,t] = f(u[i- 1,t- 1],u[i,t- 1],u[i + 1,t- 11);
od

od

od

od

One cannot advance the computation in time for a fixed subset of the grid

points without advancing it for their neighbors; to update the values at the

edge of the block of grid points, we require values from neighboring grid

points outside the block that have not been computed. In other words,

the loop interchanges that we performed were illegal and, the transformed

program produces meaningless results.

Wolfe's second paper on tiling recognizes this fact. He advocates the use

of a technique called/oop skewing [19]. (This was also discussed by Irigoin

and Triolet [11].) By loop skewing,Wolfemeanschanging the index of the

inner loop from the natural variable (i above) to the sum or difference of

the old inner index and an integer multiple of the outer loop index. With

this transformation, the code above can be changed as follows:

for t-Oto redo

forr-t+ltot+n-1 do

u[r-t,t] = f(u[r-t- 1,t- l],u[r-t,t- l],u[r-t+ 1,t- 1]);
od

od

//ere we have used r = i + t as the inner loop index. Note that the inner

loop now ranges over oblique lines in the (i, t) plane. We may now legally

strip mine and interchange to get a tiled program:

for tO = 0 to rn step bt do

forrO=tO+ltotO+n-1 stepbr do

for t = tO to rain(m, tO + bt - 1) do

for r = max(rO, t+ I) to min(t + n - l,rO + br - I) do

'4" - t,t] =
f(u[r-t- 1,t- 1],u[r-t,t- 1],u[r - t + 1,t- 1]);

od

od

od

od

Figure 1 shows the tiles of computation in the original coordinates (i, t).

In this paper, we consider the following generalization of Wolfe's loop

skewing. We allow all of the loop indices to be replaced by linear combina-

tions of the original, natural indices. Let the computation be a loop nest of

depth k. Let the natural indices be (il,i2,...,ih). Let A be an invertible,

k x k integer matrix. We would like to use (jl,j2,... ,jk) as the indices in

a transformed program, where

j = ATi.

8

to -- bt
ro - br "F 1

to =0
r0= 1

tO =0
ro=br+ 1

br i

Figure 1: Tiled index space, with new inner index r - t + i.

9

We can carry out this transformation in two steps. First, we replace every

reference to any of the natural loop indices in the program by a reference to

the equivalent linear combination of the transformed indices. If the rational
matrix F = k _ A-T[fpq]n,q=l (A -T denotes the inverse of AT), then we

replace a reference to i], for example, by the linear combination

Second, we compute upper and lower bounds on the transformed indices.

We call this program rewriting technique loop indez transformation.

The first contribution of this work is a method for choosing the loop in-

dex transformation A. We start from the assumption that the computation

is a nested loop of depth k in which there are some loop-carried dependences

with fixed displacements in the index space. We then consider the problem

of determining which 10op index transformations A permit the resulting

index-transformed loop nest to be successfully tiled through strip mining

and interchange. (The mechanics of automating these program transforma-

tion is discussed in the compiler optimization literature [3].) We show that

this problem amounts to a purely geometric one: finding a basis for real

k-space consisting of vectors with integer components that are constrained

to lie in a certain dosed, polygonal cone defined by the dependence displace-
ments. The basis vectors are then taken to be the columns of the loop index

transformation A. We further show that the amount of reuse that can be

achieved with a given amount of local memory, which is determined by the

ratio of the number of iterations in a tile to the amount of data required by

the tile, is dependent on A in a simple way. It is proportional to the (k- I) th

root of det(A) where ,4 is the matrix obtained by scaling the columns of

A to have euclidean length one.

We give a heuristic procedure for determining such an integer matrix A

that approximately maximizes this determinant. We report on the results

of some experiments to test its performance and robustness.

Finally, we consider the optimal choice of tile size and shape, once the

basis A has been determined. We show that it is straightforward to derive

block size parameters that maximize the ratio of computation in a tile to

data required by the tile, given knowledge of the flux of data in the index

space and the blocking basis A.

10

1.4 Notation

We useuppercaseletters for matrices. The notation X = [xl,z2,...,zk]

means that X has columns xl,z2,...,zk. The notation X = [xij] means

that X has elements zij.

In general, we use lowercase Greek letters for scalars. Let

1 ifi --j6_j - 0 otherwise

The following symbols have the indicated meaning

S

A

ii

F

D

C

P

b = []3j]

aj

¢j

The index space -- the set of values of the loop index vector

The matrix that transforms natural to new loop indices

The matrix A with its columns scaled

to have euclidean length one
A-T

The matrix of dependences
The matrix of data fluxes

The ratio of the volume of a tile to its surface area

The vector of block size parameters

A normal vector to a tiling hyperplane; one of the columns of A

A bound on the size of local memory.

The time required to perform the computation at a point

in the index space.

The time required to move data across one unit of area

in the hyperplane normal to aj.

We shall make considerable use of determinants. If X = [xl,..., :_,_] is

a real, square matrix, then the real-valued function det(X) is the volume of

the parallelepiped subtended by the columns of X:

ajzj [O < aj <1 .

Thus, det(l) = 1. Also det(X) = det(XT). If Y is also n x n, then

det(XY) -- det(X) det(Y). If T = [tij] is a triangular matrix, then det(T) =

(tll• t22.-- tnn).

11

Let sp{z} denote the one-dimensionalsubspace spanned by the vector

z, and letsp{z}± denote itsorthogonal complement.

Lemma 1 Let zl have length one. Let Xa = [x2,...,xn].

orthogonal projection matrix on sp{zl} "L. Then

det(X) - det(PiX1).

Let P1 be the

Proof: Let c = (c2,... ,ca) r be a k - 1-vector chosen so that for each

2 < j __ n, xj - ciz I is orthogonal to zl. Construct the matrix

1 -c -T)C= 0 I,_1 "

Then, sinceC istriangularand has unit diagonal,det(C) = i. Since Z 1 is

a vectorof lengthone, XC = [zl,PIXI]. Thus,

det(X) 2 = det(XTX)

= det(CTxTxc)

-- det([zl,PIX1]r[zl,P1X1])

= det 0 (P1X1)r(PIX1)

- det(P1Xl) 2 .

2 Statement of the Problem

We are given a convex set of lattice points S E Zk. This is the set ofaU values

of the k dimensional natural index i = (il, i2,..., ik) in the loop nest. We call

S the indez space of the loop nest, which is the standard term, even though _q

is a finite subset of Zk. We are also given a set of dependence displacements

D = [dl,..., d_] where each integer vector dj E Z k is the displacement in the

index space from iterations that produce values to iterations that use them.

The integer m is the number of such dependences. Hence, for all points

i E ,q and for each 1 <_.j _< m, if i - dj E S, then iteration i - dj must have

been performed before we perform iteration i. We may also consider anti-

dependences and output dependences and treat them in the same manner.

(See [8] for the definition of the various kinds of dependences.)

12

We now consider the blocking problem. The problem is to partition S

$ = S_ u 52 u... u`gp (1)

where the subsets of index points {Sj) are disjoint. The jth tile is the task

of executing the loop body for all values of the loop index in `9j.

Some restrictions are in order if this partition of ,9 is to be of any use.

The key restriction was stated by Wolfe [19]:

"Each tile is a unit of computation to be scheduled on a pro-

cessor. Once a tile is scheduled ... it runs to completion without

preemption. A tile will not be initiated until M1 dependence con-

straints for that tile are satisfied, so there will never be a reason

that a tile, once started, should have to relinquish the processor."

We call this the atomieity requirement.

The second, less fundamental but nevertheless important restriction is

that the tiling should be expressible as a transformation of the original pro-

gram. For this reason, we restrict our attention to partitions of ,9 achieved

by cutting ,9 along hyperplanes. Wolfe's original tilings used planes normal

to the natural coordinate axes. Here, we allow arbitrary planes with integer

normals. If we want to cut up ,9 along hyperplanes normal to the integer

vector a, we first apply loop index transformation to one of the original

loops, replacing its index with aTi. We then strip mine this loop and bring

the strip loop to the outermost position.

2.1 Definitions

First, we define the type of partition of ,9 that we are considering. Let an

integer vector a E Z k and an integer block size parameter/3 be given. The

partition induced by a and/3 is given by (1) where

,gj = {i E ,9 J (rain aTi) + (j -- 1)/_ < aTi < (rain aTi) + f13}.

(Imagine a knife aligned so that a is normal to its fiat side, cutting ,9 into

slices of equal thickness 8-)

13

We associate with S and D the dependence graph G = G(S,D) with

vertices S and edges

E={(i,i')eS xS 13acolumnaiofD_i+d_=i'}.

We assume that G is acyclic. (If the dependence graph comes from a loop

nest in an imperative language like Fortran, then G has to be acyclic.)

Definition 1 The set

C = C(D) - {z E R k I DTx _> 0}

is called the time cone of D. (The inequality is interpreted componentwise.)

Note that C is an open, convex set dosed under multiplication by a positive

scalar - i.e., C is in fact a cone. It is polygonal, the intersection of the

half spaces {d_'x > 0}_ffil. We call C the time cone, without mentioning D,
whenever there is no ambiguity.

The closure of C is also important; it is defined by

= - {z e Rk I DTz >-0).

Two subsets of C are important here. First, we must choose, as the

normals to the hyperplanes used to partition ,.q, integer vectors in _. The

intersection of_ with the surface of the unit sphere in R k (with the euclidean

norm) also plays a role.

Lemma 2 lf C is nonempty, then G(S, 1)) is acyclie.

For the proof, observe that the iterations may be performed in order of in-

creasing value of zTi where z is any vector in C. Because all dependence

displacements dj make an acute angle with such an z, no dependence con-
straint is violated. We may therefore interpret zTi as the time at which

iteration i is to be performed, hence the name we have given C. Points of

,.q with equal value of zTi are independent of one another and can be exe-

cuted in any order - or in parallel, for that matter. This is the essence of

Lamport's hyperplane method for the parallel execution of do-loops [13].

14

Again, ifD resultsfrom a loop nest in Fortran or a language likeit,

we can show that C isnot empty. In fact,itiseasy to see that D has the

property that the first nonzero element of every column is positive (i.e. it is

lexicographically positive). From this, the nonemptyness of C easily follows.

We can now show how to choose hyperplanes for partitioning S in such

a manner that Woffe's atomicity requirement is satisfied. First, we restate

the requirement in terms of the quotient of the dependence graph under the

partition (1).

Definition 2 The quotient graph of G = G(S,D) under the partition (1)

is the graph with vertices {SI,...,S,} and edges

{(Sp, Sq) I 3 ip E Sp and iq E Sq B (ip, iq) is an edge of G}.

The atomicity requirement is equivalentto the requirement that the

quotientgraph be acyclic.A sullicientconditionfor thisisthe following.

Lemma 3 The quotient graph of G(S, 19} under the partition induced by a

and 13 is acyclic if a E _.

For the proof, observe that, by their defudtion, the subsets of the partition

induced by a and 13may be ordered according to the values taken by aTi on

them. It follows from the definition of e that no point in a lower numbered

subset can depend on any point in a higher numbered subset; if there were

such a pair, say a point z that depends on a point y such that z - y - d for

some column d of D, then d makes an obtuse angle with a, i.e., aTd < O,

since by assumption aTz < aTy. But by definition, aTd __ 0 for all columns
dof D.

Moldovan and Fortes [15] have used this technique for the synthesis of

systolic arrays without cyclic data flow, which allows the array to be used

to solve problems larger than the array. They gave no method for choosing

the hyperplanes. The material of this section was also presented by Irigoin

and Triolet [11].

15

2.2 Tiling with Hyperplanes

Fromthediscussionabove,weseethat avalidpartition of,.qmaybeobtained
by choosingany integervector in C. The tiles so obtained are slices of the

index space ,q. These are not sufficiently small, however, to allow for all

their necessary data to fit in the local memory of a given computer.

In terms of the corresponding program, tiling by slicing with a single

hyperplane can be achieved by a loop reindexing of one loop followed by

strip mining of that loop (and only that loop) and interchange to make

the one resulting strip-loop outermost. In the case of matrix multiply, for

example, this would result in a four-loop program in which the innermost

three loops do n2b operations and use n 2 data. (For, no matter which loop

we strip mine, one of the matrices is indexed by the two unchanged loop

indices and so is completely accessed.)

As the matrix multiply example indicates, we need to be able to strip

mine all the loops in order to be able to work with tiles whose data sets can

be made arbitrarily small. In this section we investigate the problem of fully

tiling loop nests.

We can state this problem as follows. Given the index space S C Z k

and the dependence matrix D, choose k linearly independent vectors A -

[al,..., ak] (the columns of A are a basis for k-space) such that each aj E _.

The partition induced by A and a k-vector of block size parameters

b is obtained by slicing ,.q into slices of thickness/_1 with a knife aligned

perpendicular to al, then slicing again with thickness _ and with the knife

rotated so that it is perpendicular to a2 (making long, narrow strips rather

than slices) and so on, until one has sliced k times, finally obtaining tiles

that are shaped, except at the boundaries of S, like parallelepipeds whose

faces are perpendicular to the basis vectors.

Thus, in order to fully tile a loop nest with arbitrary dependences D, we
must be able to choose a basis in the cone _.

Should we be satisfied with any such basis? What if its elements are

nearly linearly dependent? Then we have tiles that are quite elongated,

with some very small angles and a low ratio of volume (which measures the

number of lattice points, or iterations to be performed) to surface area. The
surface area is a measure of the amount of data that must be moved into

16

localmemoryin order to carryout the workof a tile. In general,the data
movedin is the data required because of dependences of iterations in the

tile on iterations of other tiles. The iterations near the edges require this

data from outside.

The (k - 1) dimensional volume of the tile, which grows like I'[j=lk _j, is

also a measure of the amount of local memory needed to carry out the work

of each tile.

Let us therefore calculate how the choice of A determines the volume-

to-surface ratio of the induced tiles. We first answer the question for the

tiling that results when b -- (13,13,... ,/3) T. We obtain a formula for the ratio

when _ - 1, then we show how varying _ changes both the ratio and the

amount of local storage needed. In later sections we consider generalizing

to tiles with non-unit aspect ratios.

2.3 Geometric Considerations

First, we note that if a E C, then so is aa for any positive scalar a. The

partition induced by A and b is unchanged if we scale the columns of A by

arbitrary positive amount and scale the corresponding components of b by

the reciprocal amounts. There is therefore no loss of generality if we replace

A with ._, the matrix obtained by scaling the columns of A to have unit

euclidean length.

We first assume that b - (/3, _,...,/_)T. Let _ - 1. Then except at the

boundaries, all tiles are congruent to

T-{zER k IO<-zTaj<:l, Vl <_j<_k). (2)

T is a para_elepiped subtended by the columns of the inverse of ._T. In

other words, if F - [fl,... ,fk] - ._-Y, then

k

7 = = j/j Io < < 1). (3)
j=l

To see this, note that fTaj -- _kj, so for any z that satisfies (3), zTaj --

ajfTa j -- otj, and since 0 _< aj _< 1, equation (2) is satisfied.

Let V(T) denote the volume of T. Then

V(T) = [det(F)[= [det(A)[-1 .

17

Let usnowconsiderthe faces of T. Without loss of generality, consider the

face T(1)subtended by f2,... ,fk. The face is itself a (k - 1) dimensional

para]lelepiped. We want to know its surface area, or in general its (k - 1)

dimensional volume, which we denote V(T(1)).

Lemma 4 V(7 "(1)) --[det(F)] = V(T').

We give a proof, unfortunately algebraic rather than geometric in nature, in

the Appendix.

What are the consequences of the lemma? we see that all the faces have

the same area and that it is equal to the volume of T. Thus, the ratio p(T)

of the volume to the total surface area of T is just the reciprocal of the

number of sides, 2k:

Theorem 5 For any k × k matriz _ with unit-length columns, the paral-

lelepiped T defined by (2) has a ratio of volume to surface area of

1

p- p(k)- 2"-k"

At first this is surprising, since if _ is fax from having orthogonai columns

we would expect a lower ratio. The explanation is that the constant ratio

has been obtained because the size of T grows as ,_ loses orthogonality.

(Scaling up the size of any k-dimensional object by a factor ¢ increases the

ratio by the factor ¢.)

The problem we have is to make the ratio p as big as possible subject

to some limit, # on the tile cross section. This is because, as we shall

show in detail later (and it is clear intuitively), the cross section of a tile is

proportions] to the amount of local memory needed to execute it. The cross

section of T is also roughly equal to Idet(F)[. To satisfy such a bound, we

must change the size of T. To keep the problem simple, we shall for the

present consider rescaling b by a constant factor 8- Let _ be chosen so that

the area of a face, F(T), is exactly/_. We have that the volume and area of

the rescaled tile axe

V(T) = _3kldet(F)[

and

F(T) - _(k-1) I det(F)l •

18

Thus, we must choose

_ (_ Idet(_i)l) _/Ck-x) •

We can then achieve the ratio of volume to surface area

p=_=(#,_) -- (#] det(A)l) 1/(k-x)
2k

On the other hand, if we wish a ratio p* of volume to surface area, we need

tiles of dimension/5* = 2kf. Therefore, we must be able to hold tiles whose
sides have area

(/_,)k-x (4)
,ni, = i det(_)l

- (2kp*)k-1 (5)
]det(A)] "

We can, because of these observations, now state the optimality problem

we would like to solve: Given a cone dr, find an integer basis whose elements

are in the cone. Choose them so that the matrix having the scaled basis vec-

tors as columns has largest possible determinant. (We call the determinant
of this scaled matrix the normalized determinant.

This problem is related to, but is not the same as, choosing JI to minimize

its spectral condition number under the constraints DTA > O. (See [10] for

the definition and properties of matrix condition numbers.) Consider the

vector of singular values of Ji. The normalization condition places it on the

unit sphere in R k. The condition number is the ratio of the largest to the

smallest component; the determinant is the product of the components. In

the unconstrained case, both are optimized by the vector of equal singular

values. In the constrained case, however, the optimizing matrices can differ.

Of course, for general dr, there may be no maximizer among the integer

bases in the cone. And we do not know whether there is always a maximizing

choice when dr comes from an integer dependence matrix D.

We can view this problem as the maximization of the real valued function

]det(tI)] over the k2 dimensional space of integer matrices A, subject to m

linear inequality constraints DTA > O. It might be fruitful to use a standard

method for the continuous problem and then convert the solution to integer

by some rounding-off procedure; we have not pursued this approach.

19

A*

In the next section, we consider a heuristic method for choosing the basis

3 A Procedure for Choosing the Tiling Basis

In this section, we describe a practical procedure for choosing a tiling basis

A given the dependence matrix D. The procedure's complexity is a function

of k, the nesting depth of the loop; m, the number of dependence directions;

sad p, the number of rays of the cone _. (We define what we mesa by

the rays of a polygonal cone below.) In these terms, the complexity of the

procedure is O(pk 2 + k3 + mk-lk2). Wifile the exponential term here may

be cause for some uneasiness, the reader should keep in mind that in the

practical application of these ideas k will rarely exceed four.

The procedure can be described as follows:

1. Construct the set of rays of the cone C. A ray is a vector r E Z k that

is on the boundary of _ sad is at the intersection of at least k - i of the half

spaces {dTr = 0). Thus, the rays satisfy

D=r - [d_,(1),d_,(2),...,d,(k_l)]Tr -- 0 (6)

where E -- {_(1), _(2),..., ¢(k- 1)) is a subset of the integers _1, 2,..., m}.

This is a necessary condition. Let us suppose that there is a unique integer

solution (up to scaling) of equation (6). For the solution r to be a ray,

we must check whether DTr _> 0. We also check to see whether DTr <_ 0

because, if that is the case, then -r is a ray of _. If we find that the rows

of D selected by E are linearly dependent so that (6) has a two or more

dimensional subspace of solutions, then we just ignore the set E.

The method we use for the construction is simply to form all of the

(m) subsetsEsadthensolve(6) f°rr"Ourimplementati°nusesak-1

QR factorization with column pivoting, which is very effective at detecting

linear dependence of the columns/_ [10]. It is straightforward to find the

integer solution to (6) by computing a solution in floating-point and then

finding the smallest scalar multiple that makes the solution integer (after

perturbations on the order of roundotf error). Implementations that use

only integer arithmetic would also be feasible sad perhaps better.

20

The complexity of thesedecompositions is O(k3). However, we may

update the QR decomposition after changing one column of the matrix at

cost O(k2). Bischof has recently shown how to do so and still monitor the

linear independence of columns [2]. In our experiments, we do not use such

an updating procedure.

We must consider the case in which D T itself has a nontrivial nun space,

which in fact happens quite often. In this case, the set _ is a wedge,

where X is the null space of D T and C1 is the intersection of C with the

orthogonal complement of JV', the row space of D T. To detect this case, we

always start with a QR factorization of D T itself. This allows us to find

the rank of D and an integer basis for the nun space of D T in a standard

manner. We then construct the rays of _1 by applying a variant of the

procedure above to the augmented matrix [D, N], where the columns of N

are the computed basis for Af. In the variant, the subsets _ always include

all of the columns of N, and enough other columns to make up a set of

k - 1. The resulting rays must therefore be members of _1; together with

the columns of N they are the of rays of C.

Having obtained the rays as the columns of a matrix R = [rl, r2,..., rp],

we next choose as our first approximation to the optimal basis a subset of

these rays. As the cone is invariant under scaling of these rays, we normalize

them so that their length is one. Then we select a subset of k of them, chosen

to approximately minimize the condition number of the subset. (We show

below that this also results in a nearly maximum determinant.) This is

a standard problem, called subset selection, in statistics. We employ the

heuristic procedure of Golub, Klema, and Stewart [9], which is described in

the text of Golub and Van Loan [10]. This procedure involves a singular

value decomposition (SVD) of R and the QR decomposition with column

pivoting of a matrix that is part of the SVD, with an overall cost of rk 2 ÷ 6k 3

floating-point operations (an operation being a floating-point addition and

a floating-point multiplication).

We know of no method for finding the optimal subset of rays other than

an exhaustive search, at a cost of ½ _) kS flops. The relative costs of our/

implementation and exhaustive search for the optimum subset are illustrated

in Figures 2 -- 4. Obviously, the exhaustive procedure is prohibitively

21

25O0
Opera6on Coums forSelectionin2 Directions

_O00

I._0[......

I I0001-_I°"

500

o 3_ _ 4_ _ 51s 6
Ntm_ber of Rays

Figure 2: Operation counts versus number of rays for selection in 2 dimen-

sions. Solid llne: Subset selection; Broken line: Exhaustive search.

22

i

xlOL
2.5

OperationCactusforSelecfianin3Dimemions

.le °*

jo

ae

oF

is

sw

s S

a_

p_

Bo P_

osos _°B

ss SB

Bo_o B°w

Numberof Rays

Figure 3: Operation counts versus number of rays for selection in 3 dimen-

sions. Solid line: Subset selection; Broken Iine: Exhaustive search.

23

xl0S
3

2.5

0.5

Operation Cooms for Selection in 4 Dimcmiom

#/

/

i

/

I
/
/

/

/
I

/
/

/
/

/
/

/w

s /

/

o /

wB B
/

.B._a_.- "w'/wP

...***.°.o_**'°*

Numbe_of Rlyu

Figure 4: Operation counts versus number of rays for selection in 4 dimen-
sions. SoLid llne: Subset selection; Broken Line: E_austive search.

expensive for large problems, but may be used for k = 2, for k - 3 and

p < 6, and for k -- 4 and p < 6. On the other hand, subset selection does

very well. In a test of 1000 randomly generated 3 x 6 matrices D, subset

selection produced a suboptimal choice in 18 cases. In the worst of these,

the determinant of the basis that it found was 17% smaller than that of the

optimum basis.

The basis chosen at this point may be far from optimal. Consider the

case

D-- 0 1 "

The two rays of the cone are the columns of

(0 1/R= I -I "

These rays make an angle of 135°; clearly there axe orthogonal bases whose

elements axe in _, but not a_l st the boundaries. To catch cases Like this, we

24

have implemented a generalized orthogonaiization process. Let angle(z, y)

denote the angle between the vectors x and _/, given by

/ zTF)angle(x, y)= arccos I(xTxll/-_(yTy)l/2 •

The procedure is

for j = 1 to k do

Find 1 < i < k such that angle(ai, aj) is maximum;

if (angle(a_, aj) > 7r/2) do

aj = -
so that aj is orthogonai to ai;

Replace aj with an integer vector in

of approximately the same direction;

od

od

if DTA >_ 0 and the normalized determinant is larger than before

improvement, accept the new A, else use the old one;

In a test of 1000 randomly generated 3 x 6 dependence matrices D, the

basis selected by finding the rays of _ and then using the subset selection

procedure above was improved by this procedure. The average determinant

was improved 14%, from .63 to .71. In comparisons with several similar pro-

cedures, this one did the best job of maximizing the normalized determinant.

We also considered the following variants:

i. As above, but replaceal ratherthan aj aftermaking itorthogonal to

aj.

2. For j - 1 to k, aj ismade orthogonal toeach other basisvectorwith

which itmakes an obtuseangle;thiscontinuesuntilthereare no such

obtuse anglesinvolvingaj.

3. For every pairof basisvectorsa_ and aj with i< j, orthogonaUze aj

and a_ by adding a multipleof aj to a_.

4. For every pairofbasisvectorsai,and aj with i < j, orthogonaUze aj

and ai by adding a multipleof ai to aj.

25

Procedures 2, 3, and 4 are more costly with little in the way of improved

performance. Procedure 1 actually does worse. Thus, we recommend the

use of the procedure above.

4 Other Applications

The same technique of tiling loop nests can be used in other contexts, for

example:

1. The synthesis of systolic arrays. We may design an array large enough

to handle a single tile of some given size; the overall computation can be

performed by the small systolic array regardless of the size of the data,

by tiling the index space and using the array on the individual tues. This

technique was proposed originally by Moldovan and Fortes [15], who did not

specify how to choose the hyperplanes; we have filled in that gap.

2. The decomposition of work into tasks that can be executed in par-

xUel on a shared-memory multiprocessor. This technique can find tasks

of medium to large granularity that require little communication through

shared memory. It is straightforward to prove that, for sufficiently large

block sizes, the dependence vectors in the quotient index space are all pos-

itive. Thus, we may execute tiles simultaneously if the sum of their tile

indices is equal. This approach is currently being pursued by some manu-

facturers of shared-memory parallel M_[MD machines. This paper enhances

that technique by allowing for more effective decompositions.

5 Precise Storage and I/O Requirements

In this section, we develop formulae that give precise measures of the storage

required for execution of a tile and of the number of data (input and output

from local memory) required for execution of a tile. These can be used

to state more precisely the optimization problem that should be solved in

determining the tiling basis.

Consider I/O requirements first. Now, let E be an integer k × m I matrix

whose columns represent the data required to satisfy the true dependences

in an index space. Consider the loop nest

26

fori- ltondo
for j - 1 to n do

a[i,j] = a[i,j- 1] + b[i,j - 1] ;

b[i,j] = a[i,j - 1] + b[i - 1,j - 1] + c[i] ;
od

od

In thisloop nest,the dependences are

(01)D= i 1 "

A given iterationrequiresone datum from the iterationat distance(11) T

and two data from the iterationat distance(01)r. Thus, the matrix E is

0 0 1)E= 1 1 1 "

In addition to the data computed at other iterations in the index space,

for which dependence directions have been established, other data may be

required in order to execute a tile, for example, the c data in the example

above. We express these data requirements through a second matrix, C.

Each column of C corresponds to a datum (such as c[i] in the example)

that is used in common by a number of iterations. It gives the smallest

displacement in the index space between iterations that use the datum. For

the example above,

1 '

since all iterations with fixed i use the value c[s]. If, for example, c0[t] were

used for j = 0,2,...,n - 1 and c1[i] were used at iterations j - 1,3,...,n,

then we would have

We are now ready to statethe I/O requiredto execute a tile.We as-

sume that no data are availablein localmemory to begin with and that all

27

data that may be needed later must be written back from local memory at
-. [lm"completion of the tile's execution. Let E = [e_]__-'I. Let C tc_j,=1. The

amount of data is given by

Data(A,b) =

k

([2t,c]•aj)).
j=l

Here V(T (j)) is the volume of the face of the tile normal to the tiling basis

vector aj, _j is a normalized tiling basis vector, and eT = (1,1,..., 1). That

this is correct follows from the observation that the grid points at the face

of a tile depend on values created at iteration points in a "shadow"; the

shadow points are points not in the tile from which a dependence into the

tile emanates. For each column d of E the corresponding shadow has as

its base a face of the tile, say the face normal to aj, and as one of its sides

the vector whose direction is -d and whose tail is at any corner of the

face. This shadow has height dTaj and base area V(T(J)), so it has volume

V(T(J))dTai. The factor 2 multiplying E expresses the fact that data that

are responsible for dependences must be read in and written out, while data
that are used but not crested are read in but not written back.

The volume of faces is explained in Section 2.3.

5.1 Choosing the Ordering of the Block Loops

A consequence of the requirement that DTA >_ 0 is that the block loops

may appear in any order. Suppose, without loss of generality, that

eT ([2E, C] ral) = m_talxl• T([2E, C] T aj).

Then the flux of data per unit surface area across the faces of the tiles

normal to al is greater than that across the other faces. We would choose to

make the Jl block loop innermost. This is because we would avoid storing

to memory the data that flow across the faces normal to al when going

from one tile to the next. This has the effect, for example, of causing us

to choose a "left-looking" block Ganssian elimination or block Householder

28

QR method in preference to a "right-looklng" method, which helps to reduce

the memory traffic further. (The advantages of this loop ordering have been

discovered already for several matrix computations [6].) See the examples

of Section 7 for illustration of how this technique should be applied.

5.2 Local Memory Requirements

We will make the simplifying assumption that the same computation, pro-

during and consuming the same number of data, is done at every point of

S. The memory required to execute a tile depends on the order in which

the individual points of the tile are executed. For this analysis, we assume

that the points along hyperplanes normal to a given integer k-vector r are

executed simultaneously. We need to store the values produced at earlier it-

erations that are required by the iterations on this hyperplane. The number

of such values is again given by the sum of volumes of "shadows" as

Mem(A,b,r) - [mtax V(r,t)] (eT([2E, C]T_')) •

Here V(r, t) is the volume of the intersection of the hyperplane rTi = t and

the given tile, i.e., of the set of iteration points computed at time t. The
maximum is taken over the relev'4n_t values of t.

This largest volume is a function of the tile dimensions and of the shape
of the tile as well as of the time coordinate r. In general, it can be larger

than the faces, but by no more than a constant factor of at most 2 k-1. It

may be much smaller, as in this case: Let

1 10)A-- 0 1

and let _1 = 1 and _2 = 10 so that the tiles are long and narrow and are

nearly aligned with the il axis. The faces of these tiles have lengths of 10

and about 10.5. If we take r = (0 1) T, then the set of points in the tile

that are simultaneously executed is small; there are at most two. On the

other hand, if we choose r -- (1 0) T, then there are 10 such points. So our

earlier assertion that face volume is a good measure of memory required is

in doubt.

This is not, however, a real possibility. The example above depends on

highly elongated tiles. This happens because the basis vectors (the columns

29

of A) are close, and this in turn is due to a narrow cone _. But in order

for r to be used in scheduling as described above, we must have 1" E ¢.

The difficulties described above are associated with a choice of r nearly

orthogonal to all of the basis vectors a, which are confined to lie in a narrow

cone. Such a vector cannot also be in the cone.

6 Optimal Choice of Block Size

In this section we present solutions to two important instances of the general

problem of optimal choice of the block size parameters b = L_I,...,/_k]. We

assume that a set of tiling hyperplane normals A has been chosen and that

the data fluxes E and C are known, as are the dependences D. The choice

of the outermost point loop index -- _', will also play a role.

Here our viewpoint is somewhat more realistic than in Section 3. We
take into account the fact that not all the data required by the execution

of a tile must be read a priori. Instead, we consider the order in which the

tiles iterations are processed and assume that the needed data are read (or

written) at the time they are needed.

We need some constants to make our estimates precise. Let the amount

of work per grid point be to. (The appropriate units for to and the constants

@j that follow are seconds, so that the machine characteristics are included

through these constants.) Let the flux of data per unit surface area across

the face normal to aj be _bj. The way that _bj depends on E, C, and aj was

explained in Section 5.

First we consider the case k - 2 with the assumption that r is one of the

two tiling vectors, say _"-- al. Then the amount of local memory required

is proportional to _2 and is independent of/_. The total work done is

to/31/_ and the amount of data referred to is _fll + _2_. Thus the ratio of

computation time to memory access time is

as/31 --* oo. (We have redefined the dimensionless parameter p here.) See

Figure 5.

In this case, therefore, we always take _ as large as possible (subject

3O

0.95 ... _................i................i................i................i................•................:...............

0.85 }..-_0.9 _............................. _.............._................;................i................:................:..............................i_..............................i:..............................

..........i.............i...............i................i................i...............i.............i................i................,...............
o.75L __. "-"---'i................i................_...............

0._i__... _._................i................i................i.......................... ,....-_i.................:i................i;..............1

0.6 .. i................i..........

o._50.5_-.............."..............i...............i..............._-..............._.............._..............[...............i..............
0 10 2.0 30 40 50 60 70 80 90 100

Ixta__l

Figure 5: Reuse ratio p vs. tile length. Note: _ = f12 = _2 = _1 = 1

31

only to the sizeof the problem being solved)and obtain the ratioshown.

This ratiois the product of a ratio of work per iterationt# to data per

iteration_ and the number of gridpointsflsthatfitin the locM memory.

Note in particularthat for large problems, for which fllcan be taken so

largethat the asymptote isapproached, neitherthe data per unit surfacein

the directionofas (thatis,_b2)nor the particularchoiceof tilelengthin the

al direction(thatis,ill)plays a role.Similarconclusionsare reached ifwe

model executiontime ratherthan the computation to communication ratio

p. Note alsothat ifthe ratioflz/_ islargerthan _s/_bl,then we choose

_"--as insteadofal.

The discussionabove islittlechanged ifwe allow arbitraryr. What

matters is that we fixallbut one of the block sizeparameters and allow

the other to grow, prodded that with the given choiceof r the memory

requirement isindependent of thisone parameter. For that to be true,all

we need isthat _"should not be closeto a2 ratherthan the much stronger

requirement _- ----al.

Next let us take r = al and 1_> 2. Again, we fLXall but one of the block

size parameters, in this case fls,... ,andflk and allow the other one to grow,

limited only by problem size.

Let B = I'I2k flj. Memory size places some upper limit on B. Let the

memory required per unit surface in the hyperplane normal to al be M.

Thus, for the given choice of the block size parameters, the local memory

required is MB/I det(A)l. If the available local memory has room for/J data,

then B is constrained by

B </_ [det(_)[/M. (7)

The amount of work per unit distance in the al direction is _B/I det(/])l.

Finally, the data required per unit distance in the al direction is

B

(Idet(A)[) fi_i
jfs i "

Thus
t_

k

32

!

With the constraint on b given by (7), the maximizing choice of b is

_j = 4pj(_p [det(_i)[/M)I/(/'-I)

k
where _ --I'[j=2_bj.

7 Blocking Examples

Our first example is an algorithm that uses plane rotations for the QR

factorization of real m x n matrix X. In the description of these example

algorithms we suppress all irrelevant detail. To that end, we use the notation

f(z, y, z) to mean a generic function of the arguments z, y, and z which may

be a different function at every occurrence.

(i)

(2)

for k-- 1 to n do

fori=mtok+l step-1 do

(c,s)= f(z(i,k),z(i- 1,k));

forj=k+ltondo

z(i,j)

od

od

od

There are two distinct true dependences here. Statement (2) at iteration

(i,j,k) depends on statement (2) at iterations (i-{- 1,j,k) (because x(id)

is changed there) (i - 1,j,k - 1) (because x(i-lj) is changed there). Each

iteration (i,j, k) of statment (2) depends on statement (1) at iteration (i, k),

so that (0,1,0) T is a column of C. Furthermore, statement (1) depends on

statement (2) at iterations (i, k, k- 1) and (i- 1, k, k- 1). Therefore, through

the uses of c and s, statement (2) depends on itself at iterations (i, k,k - 1)

and (i- 1, k, k- 1); this dependence is weaker that a dependence on iteration

(i,j - 1,k - 1) and (i - 1,j - 1,k - 1), so if we take these to be the actual

dependences we are going to be safe. There are also antidependences and

33

output dependences,but thesecanbe ignoredfor the moment.Thus,

D

-1 1 0 1 /
0 0 1 1

0 1 1 1

and

/°/C= 1

0

In this case, there are only three rays of the cone, namely,

O 0 -1)
1 -1 0

0 1 1

After improvement we arrive at the basis

O 0 -1 /
1 0 0
0 1 1

Thus, the new indices are j, k, and k - i.

After replacing the index i by r - k - i we have the following program:

fork--ltondo

forr=k-rnto-ldo

(c(r,k),s(r,k)) - f(z(k- r,k),z(k- r- 1,k));

forj=k+lton do

od

od

od

Strip mining produces

34

/

for kO-1 to n stepbdo

for k = kO to rain(n, kO + b- 1) do
for rO-kO-mto-lstepbdo

for r = max(rO, k - m) to min(-1,rO + b- 1) do

(c(r,k),_(r,k)) = f(x(k - r,k),x(k - _ - 1,k));
forjO=kO+l tonstep bdo

for j = max(k + 1,jO) to min(n,jO + b - 1) do

[x(k- r- 1,j) x(k-r,j)] c(r'k)'8(r'k)/ ;
od

od

od

od

od

od

Then loop interchanging produces

for kO=l tonstepbdo

forrO=kO-mto-lstepbdo

for jO = kO to n step b do

for k= kO to min(n, kO+b- 1) do

for r = max(tO, k - m) to rain(-1, rO + b - 1) do

if jO = kO then (c(r,k),8(r,k)) = f(z(k - r,k),z(k - r - 1,k));

for j = max(k + 1,jO + 1) to mln(n,jO + b - 1) do

[z(k- r- l,j)]z(k-r,j) = f ([x(k- r- l'J)]c(r'k)'8(r'k)l ;x(k-r,j)

od

od

od

od

od

od

35

ko--1

_=1

ko-1

Figure 6: Blocking of the QR factorization of an 20 x 15 matrix with _ = 5.

36

This rathercomplicated blocked algorithm works as follows.We illus-

trate with rn - 20, n = 15, b -- (5,5,5). Elements of X axe eliminated

by plane rotationsin patches,as shown in Figure 6. The valuesof k0 and

r0 at which dements are eliminatedisshown in each patch. The rotations

used to do the eliminationare appliedonly to columns in the currentpatch

(during the block operationwith j0 --/¢0).These rotationsare storedand

laterappliedto columns to the rightofthe patch (when j0) k0).

For another example, considerthe followingprogram forthe QR factor-

izationwhich uses Householder transforms ratherthan plane rotations.In

thispseudo-code we use the notation z(k :re,j) to referto the vector of

dements [z(k,j),z(k + 1,j)...,z(m,j)]. We includeitas an example of a

program that can be blockedwithout usinglinearloop index transformation.

for k=ltondo

8(k) = Ilx(k : m,k)ll;

•(k,k) =/(_(k,k),8(k));

forj--k+lto nstep do

,'(k,j) =/(,(k),x(k : m,k)Zx(k : re,j));
_(k : ,n,j) = _(k : re, j) +,'(k,j) • x(k : _,k);

od

od

In Fortran, loops would be triply nested. The compiler, on detecting

a dependence of some subsequent statement on the whole of an inner loop

implementing a reduction operation, such as the norm and the inner product

in the example, should choose to view those loops as atomic and therefore

work with an index space of reduced dimension.

The dependences in (j,k) space are

(10)D= 01 "

The basis chosen is the obvious one: A = I. Thus, no skewing is done.

Now, we choose the order of the block loops. The measure of data flux

given in Section 5 is the same for a2 mad for al; so neither order is preferred.

37

Note, however, that the two dependences are differentin character.The

(0,1)T dependence isa true dependence at every point of the index space.

The other,(1,0)r expressesthe dependence ofiteration(j,k) on "iteration"

(k,k) (thetask performed outsidethe innerloop forgiven k);the data that

are requiredare used in common by allthe iterationswith fixedk. Thus, for

the purpose of determining data flux,thisdependence directionshould be

givenweight 1 (asare columns ofC), not 2. Ifwe make thischange, the flux

is greaterfor a2, so we make the k Mock loop innermost. This procedure

yieldsa left-lookingmethod in which allgroups of Householder transforms

are appliedto a block of columns justbeforethat block is triangularized.

This allowsthe block to be held in localmemory during the applicationof

thesetransforms.

Acknowledgement We would liketo thank llseIpsen for her help at

the beginning of our work on thisproblem and Mike Wolfe for his at the

end.

Appendix. Proof of Lemma 3.

Let the k x k- 1 matrices F1 - [f2,-.-,fk] and A1 = [a2,...,ak].

The face 7"(1) is subtended by the columns of F1 • Let the matrix F1 be

factored

FI = OR (s)

-[Qlql][R1]- 0 " (9)

where Q is an orthogonal matrix, R is an upper triangular matrix, Q1 is

kxk-l, andRlisk-lxk-1;thus F1 -Q1R1 = QR, and ql isa
unit vector in the direction normal to the range of F_ , which is the span

38

_1

of {al}. The matrix P1 - Q1Q T is the orthogonal projector on {al} ±. The

factorization (9) always exists and is unique up to signs on the diagonal of

The columns of R1 are the coordinates of the columns of F1 with re-

spect to the orthonormal basis (for the subspace of R k in which 7"(1) lies)

consisting of the columns of QI. Thus

V(T0)) - I det(R1)l.

We must therefore show that] det(R_)l = Idet(F)l = Idet(A)l -I.

T TFrom the identity I = FTA it follows that Ik-1 = FIr AI = R 1 Q1 A1 ;
thus

laet(R)t = Ida(Qri)1 .

The proof is complete if we can show that det(Q1T A1) = det(A). But

since QTQ1 = Ik-1,

det(Q T A1)2 _ det([A1 TQ1QT1][QIQT A1])

- det([P1 A1 IT[p1 A1]).

The result now follows from Lemma 1. II

References

[1]W. A. Abu-Sufah, D. J. Kuck, and D. E. Lawrie. On the performance

enhancement of paging systems throught program analysis and trans-

formations. IEEE Transactions on Computers, C-30:341-356, 1981.

[2] Christian H. Bischof. Incremental condition estimation. TechnicalRe-

port ANL-MCS-P15-1088, Argonne National Laboratory,1989.

[3]David Callahan, Steve Cart, and Ken Kennedy. Improving register al-

location of subscripted variables. In Proceedings of the A CM SIGPLAN

"90 Conference on Programming Language Design and Implementation,

Association for Computing Machinery, 1990.

[4] Steve Carr and Ken Kennedy. Blocking linear algebra codes for memory

hierarchies. In Proceedings of the Fourth SIAM Conference on Parallel

Processing for Scientific Computing, Society for Industrial and Applied

Mathematics, 1989.

39

f"

[5] J.J. Dongarra and D.C. Sorensen. Linear algebra on high-performance

computers. In U. Schendel, editor, Proceedings of Parallel Computing

85, pages 3-32, JACK: WHAT PUBLISHE117, 1986.

[6] E. Anderson, Z. B_i, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz,

A. Greenbaum, S. Hammarling, A. McKenney,, and D. Sorensen. LA-

PACK Working Note #_0: LAPACK: A Portable Linear Algebra Li-

brary for High-Performance Computers. Technical Report , University

of Tennessee, Computer Science Department, May, 1990.

[7] K.A. Gallivan, 11.J. Plemmons, and A.H. Sameh. Parallel algorithms

for dense linear algebra computations. SIAM Review, 32(1):54-135,
1990.

[8] Dennis Gannon, William Jalby, and Kyle Gallivau. Strate_es for

cache and local memory management by global program transforma-

tion. Journal of Parallel and Distributed Computing, 5(5):587-616,

1988.

[9] G.H. Golub, V. Klema, and G. W. Stewart. Rank degeneracy and least

squares problems. Technical 11eport T11-4,56, Department of Computer

Science, University of Maryland, 1976.

[10] Gene H. Golub and Charles F. Van Loan. Matriz Computations. Johns

Hopkins, Baltimore, MD, Second edition, 1989.

[11] F. irigoin and 1l. Triolet. Supernode partitioning. In Conference Record

of the 15th Annual ACM Symposium on Principles of Programming

Languages, pages 319-329, Association for Computing Machinery, 1988.

[12] Ken Kennedy. Talk at the fourth SIAM conference on parallel process-

ing for scientific computing. ChicAgo, minois, 1989.

[13] Leslie Lamport. The parallel execution of do loops. Communications

of the Association for Computing Machinery, 17:83-93, 1974.

[14] H. Lomax and T. H. Pulliam. A three-dimensional implicit code for

the ILLIAC IV. In Garry Rodrigue, editor, Computational Physics on

Parallel Computers, Academic Press, New York, NY, 1982.

[15] Dan I. Moldovan and Jose A. B. Fortes. Partitioning and mapping algo-

rithms into fixed size systolic arrays. IEEE Transactions on Computers,

C-36:1-12, 1986.

40

[16] Robert Schreiber. Block algorithms for parallel machines. In Numerical

Algorithms for Modern Parallel Computer Architectures, pages 197-208,

Springer-Verlag, New York, NY, 1988.

[17] Michael E. Wolf and Monica S. Lain. An algorithm to generate sequen-

tial and parallel code with improved data locality. Technical Report,

Computer Systems Labortory, Stanford University, 1989.

[18] Michael Wolfe. Iteration space tiling for memory hierarchies. In

Garry Rodrigue, editor, Parallel Processing for Scientific Computing,

pages 357-361, Society for Industrial and Applied Mathematics, 1989.

[19] Michael Wolfe. More iteration space tiling. In Proceedings Supercom-

puting '89, pages 655-664, Association for Computing Machinery, 1989.

41

